41 research outputs found

    Instructed versus spontaneous entrainment of running cadence to music tempo

    Get PDF
    Matching exercise behavior to musical beats has been shown to favorably affect repetitive endurance tasks. In this study, our aim was to explore the role of spontaneous versus instructed entrainment, focusing on self‐paced exercise of healthy, recreational runners. For three 4‐min running tasks, 33 recreational participants were either running in silence or with music; when running with music, either no instructions were given to entrain to the music, or participants were instructed to match their running cadence with the tempo of the music. The results indicated that less entrainment occurred when no instruction to match the exercise with the musical tempo was provided. In addition, similar to the condition without music, lower speeds and shorter step lengths were observed when runners were instructed to match their running behavior to the musical tempo when compared with the condition without such instruction. Our findings demonstrate the impact of instruction on running performance and stress the importance of intention to entrain running behavior to musical beats

    Shifting the musical beat to influence running cadence

    Get PDF
    The use of music in the fields of sport and rehabilitation has been explored in several ways. Mostly, these studies have dealt with the effect of different types or genres of music and the difference between using synchronous or asynchronous music. Within the studies on synchronous music there is some discrepancy as to what is considered to be synchronous. This varies from music with a tempo in the range of the tempo belonging to a certain task, to music that is exactly matched in tempo to the task's tempo. The use of tempo- matching music allows us to even do more fine-grained music alterations: shifting the beat to try to spontaneously manipulate a runner's cadence. Musical tempo has been shown to have an effect on running. Instead of changing running cadence by manipulating the musical tempo, we explored the possibility of manipulating cadence by changing the relative phase angle of the musical beat. Twenty-six recreational runners ran four minutes, nine times. The first minute of each 4-min sequence consisted of running without musical accompaniment. Running cadence was measured and the average cadence of the final 15 sec was used to select a musical track with matching tempo. In the following three minutes we tried to increase or decrease the runner's tempo up to 5%. Three different coupling strengths, meaning a small, medium or big timing difference between the beat and the footfall, were tested. The study revealed a significant main effect of the phase angle adjustment strategies on runners' cadence and velocity. Furthermore, a significant gender interaction effect was found for runners’ cadence adaptation. Women spontaneously increased or decreased their running tempo with the +5% and -5% target tempo conditions respectively. Men, however, could be sped-up, but not slowed-down more than the decrease in cadence that was already observed when the musical beats were perfectly synchronized with the footfalls. In addition to effects on kinematics, the results showed higher enjoyment levels with music than with metronome, and a decrease in enjoyment with the -5% tempo conditions. Being able to influence runners' cadence, velocity, and enjoyment through phase-shifted music is an interesting finding in the light of preventing and treating common running-related injuries

    Optimizing beat synchronized running to music

    Get PDF
    The use of music and specifically tempo-matched music has been shown to affect running performance. But can we maximize the synchronization of movements to music and does maximum synchronization influence kinematics and motivation? In this study, we explore the effect of different types of music-to-movement alignment strategies on phase coherence, cadence and motivation. These strategies were compared to a control condition where the music tempo was deliberately not aligned to the running cadence. Results show that without relative phase alignment, a negative mean asynchrony (NMA) of footfall timings with respect to the beats is obtained. This means that footfalls occurred slightly before the beat and that beats were anticipated. Convergence towards this NMA or preferred relative phase angle was facilitated when the first music beat of a new song started close to the step, which means that entrainment occurred. The results also show that using tempo and phase alignment, the relative phase can be manipulated or forced in a certain angle with a high degree of accuracy. Ensuring negative angles larger than NMA (step before beat) results in increased motivation and decreasing cadence. Running in NMA or preferred relative phase angles results in a null effect on cadence. Ensuring a positive phase angle with respect to NMA results in higher motivation and higher cadence. None of the manipulations resulted in change in perceived exhaustion or a change in velocity. Results also indicate that gender plays an important role when using forced phase algorithms: effects were more pronounced for the female population than for the male population. The implementation of the proposed alignment strategies and control of beat timing while running opens possibilities optimizing the individual running cadence and motivation

    Entrainment and synchronization to auditory stimuli during walking in healthy and neurological populations : a methodological systematic review

    Get PDF
    Background: Interdisciplinary work is needed for scientific progress, and with this review, our interest is in the scientific progress toward understanding the underlying mechanisms of auditory-motor coupling, and how this can be applied to gait rehabilitation. Specifically we look into the process of entrainment and synchronization; where entrainment is the process that governs the dynamic alignments of the auditory and motor domains based on error-prediction correction, whereas synchronization is the stable maintenance of timing during auditory-motor alignment. Methodology: A systematic literature search in databases PubMed and Web of Science were searched up to 9th of August 2017. The selection criteria for the included studies were adult populations, with a minimum of five participants, investigating walking to an auditory stimulus, with an outcome measure of entrainment, and synchronization. The review was registered in PROSPERO as CRD42017080325. Objectives: The objective of the review is to systematically describe the metrics which measure entrainment and synchronization to auditory stimuli during walking in healthy and neurological populations. Results: Sixteen articles were included. Fifty percent of the included articles had healthy controls as participants (N = 167), 19% had neurological diseases such as Huntington's and Stroke (N = 76), and 31% included both healthy and neurological [Parkinson's disease (PD) and Stroke] participants (N = 101). In the included studies, six parameters were found to capture the interaction between the human movement and the auditory stimuli, these were: cadence, relative phase angle, resultant vector length, interval between the beat and the foot contact, period matching performance, and detrended fluctuation analysis. Conclusion: In this systematic review, several metrics have been identified, which measure the timing aspect of auditory-motor coupling and synchronization of auditory stimuli in healthy and neurological populations during walking. The application of these metrics may enhance the current state of the art and practice across the neurological gait rehabilitation. These metrics also have current shortcomings. Of particular pertinence is our recommendation to consider variability in data from a time-series rather than time-windowed viewpoint. We need it in view of the promising practical applications from which the studied populations may highly benefit in view of personalized medical care

    Timing markers of interaction quality during semi-hocket singing

    Get PDF
    Music is believed to work as a bio-social tool enabling groups of people to establish joint action and group bonding experiences. However, little is known about the quality of the group members’ interaction needed to bring about these effects. To investigate the role of interaction quality, and its effect on joint action and bonding experience, we asked dyads (two singers) to perform music in medieval “hocket” style, in order to engage their co-regulatory activity. The music contained three relative inter-onset-interval (IOI) classes: quarter note, dotted quarter note and eight note, marking time intervals between successive onsets (generated by both singers). We hypothesized that singers co-regulated their activity by minimizing prediction errors in view of stable IOI-classes. Prediction errors were measured using a dynamic Bayesian inference approach that allows us to identify three different types of error called fluctuation (micro-timing errors measured in milliseconds), narration (omission errors or misattribution of an IOI to a wrong IOI class), and collapse errors (macro-timing errors that cause the breakdown of a performance). These three types of errors were correlated with the singers’ estimated quality of the performance and the experienced sense of joint agency. We let the singers perform either while moving or standing still, under the hypothesis that the moving condition would have reduced timing errors and increased We-agency as opposed to Shared-agency (the former portraying a condition in which the performers blend into one another, the latter portraying a joint, but distinct, control of the performance). The results show that estimated quality correlates with fluctuation and narration errors, while agency correlates (to a lesser degree) with narration errors. Somewhat unexpectedly, there was a minor effect of movement, and it was beneficial only for good performers. Joint agency resulted in a “shared,” rather than a “we,” sense of joint agency. The methodology and findings open up promising avenues for future research on social embodied music interaction

    Spontaneous entrainment of running cadence to music tempo

    Get PDF
    Background: Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Methods: Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Results: Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence (p < .001). Contrasts revealed a linear relation between the tempo conditions and adaptation in running cadence (p < .001). In addition, a significant effect of condition on the level of entrainment was revealed (p < .05), which suggests that maximal effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts (p < .05). Conclusions: The applicable contribution of these novel findings is that music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove beneficial in the prevention and treatment of common running-related injuries, this finding could be especially relevant for treatment purposes, such as exercise prescription and gait retraining. Key Points: Music tempo can spontaneously impact running cadence. A basin for unsolicited entrainment of running cadence to music tempo was discovered. The effect of music tempo on running cadence proves to be stronger for women than for men
    corecore